Problem 3.27

Let \hat{Q} be an operator with a complete set of orthonormal eigenvectors:

$$\hat{Q}|e_n\rangle = q_n|e_n\rangle \quad (n = 1, 2, 3, \ldots).$$

(a) Show that \hat{Q} can be written in terms of its spectral decomposition:

$$\hat{Q} = \sum_{n} q_n |e_n\rangle \langle e_n|.$$
(3.103)

Hint: An operator is characterized by its action on all possible vectors, so what you must show is that

$$\hat{Q}|\alpha\rangle = \left\{\sum_{n} q_{n}|e_{n}\rangle\langle e_{n}|\right\}|\alpha\rangle,$$

for any vector $|\alpha\rangle$.

(b) Another way to define a function of \hat{Q} is via the spectral decomposition:

$$f(\hat{Q}) = \sum_{n} f(q_n) |e_n\rangle \langle e_n|.$$
(3.104)

Show that this is equivalent to Equation 3.100 in the case of $e^{\hat{Q}}$.

Solution

Part (a)

Because the set of orthonormal eigenvectors is complete, any vector $|\alpha\rangle$ can be expanded as a linear combination of these eigenvectors.

$$|\alpha\rangle = \sum_{n=1}^{\infty} a_n |e_n\rangle$$

To solve for a_n , take the inner product of both sides with the bra $\langle e_i |$, where $1 \leq i < \infty$.

$$\langle e_i | \cdot | \alpha \rangle = \langle e_i | \cdot \sum_{n=1}^{\infty} a_n | e_n \rangle$$
$$\langle e_i | \alpha \rangle = \sum_{n=1}^{\infty} a_n \langle e_i | e_n \rangle$$
$$\langle e_i | \alpha \rangle = \sum_{n=1}^{\infty} a_n \delta_{in}$$
$$\langle e_n | \alpha \rangle = a_n$$

www.stemjock.com

Following the hint, apply the linear operator \hat{Q} to the vector $|\alpha\rangle$.

 \hat{Q}

$$\begin{aligned} |\alpha\rangle &= \hat{Q} \sum_{n=1}^{\infty} a_n |e_n\rangle \\ &= \sum_{n=1}^{\infty} a_n \left(\hat{Q} |e_n\rangle \right) \\ &= \sum_{n=1}^{\infty} a_n (q_n |e_n\rangle) \\ &= \sum_{n=1}^{\infty} a_n (q_n |e_n\rangle) a_n \\ &= \sum_{n=1}^{\infty} q_n |e_n\rangle \langle e_n |\alpha\rangle \\ &= \sum_{n=1}^{\infty} q_n |e_n\rangle \langle e_n| \cdot |\alpha\rangle \\ &= \left(\sum_{n=1}^{\infty} q_n |e_n\rangle \langle e_n| \right) |\alpha\rangle \end{aligned}$$

Therefore,

$$\hat{Q} = \sum_{n=1}^{\infty} q_n |e_n\rangle \langle e_n|.$$

Part (b)

Formulas for the powers of \hat{Q} can be obtained as well.

$$\begin{aligned} \hat{Q}^2 &= \left(\sum_{n=1}^{\infty} q_n |e_n\rangle \langle e_n|\right) \left(\sum_{\ell=1}^{\infty} q_\ell |e_\ell\rangle \langle e_\ell|\right) = \sum_{n=1}^{\infty} \sum_{\ell=1}^{\infty} q_n q_\ell |e_n\rangle \langle e_n| \cdot |e_\ell\rangle \langle e_\ell| = \sum_{n=1}^{\infty} \sum_{\ell=1}^{\infty} q_n q_\ell |e_n\rangle \delta_{n\ell} \langle e_\ell| = \sum_{n=1}^{\infty} q_n^2 |e_n\rangle \langle e_n| \\ \hat{Q}^3 &= \left(\sum_{n=1}^{\infty} q_n^2 |e_n\rangle \langle e_n|\right) \left(\sum_{\ell=1}^{\infty} q_\ell |e_\ell\rangle \langle e_\ell|\right) = \sum_{n=1}^{\infty} \sum_{\ell=1}^{\infty} q_n^2 q_\ell |e_n\rangle \langle e_n| \cdot |e_\ell\rangle \langle e_\ell| = \sum_{n=1}^{\infty} \sum_{\ell=1}^{\infty} q_n^2 q_\ell |e_n\rangle \delta_{n\ell} \langle e_\ell| = \sum_{n=1}^{\infty} q_n^3 |e_n\rangle \langle e_n| \\ \hat{Q}^4 &= \left(\sum_{n=1}^{\infty} q_n^3 |e_n\rangle \langle e_n|\right) \left(\sum_{\ell=1}^{\infty} q_\ell |e_\ell\rangle \langle e_\ell|\right) = \sum_{n=1}^{\infty} \sum_{\ell=1}^{\infty} q_n^3 q_\ell |e_n\rangle \langle e_n| \cdot |e_\ell\rangle \langle e_\ell| = \sum_{n=1}^{\infty} \sum_{\ell=1}^{\infty} q_n^3 q_\ell |e_n\rangle \delta_{n\ell} \langle e_\ell| = \sum_{n=1}^{\infty} q_n^4 |e_n\rangle \langle e_n| \\ \vdots \\ &\approx \end{aligned}$$

$$\hat{Q}^k = \sum_{n=1}^{\infty} q_n^k |e_n\rangle \langle e_n|$$

www.stemjock.com

Now consider the spectral decomposition of the exponential function.

$$e^{\hat{Q}} = \sum_{n=1}^{\infty} e^{q_n} |e_n\rangle \langle e_n|$$

$$= \sum_{n=1}^{\infty} \left(\sum_{k=0}^{\infty} \frac{q_n^k}{k!} \right) |e_n\rangle \langle e_n|$$

$$= \sum_{k=0}^{\infty} \frac{1}{k!} \left(\sum_{n=1}^{\infty} q_n^k |e_n\rangle \langle e_n| \right)$$

$$= \sum_{k=0}^{\infty} \frac{1}{k!} \hat{Q}^k$$

$$= \hat{I} + \hat{Q} + \frac{1}{2} \hat{Q}^2 + \frac{1}{3!} \hat{Q}^3 + \cdots$$

This is the power series expansion of $e^{\hat{Q}}$ in Equation 3.100 on page 119.