Problem 3.27

Let \hat{Q} be an operator with a complete set of orthonormal eigenvectors:

$$
\hat{Q}\left|e_{n}\right\rangle=q_{n}\left|e_{n}\right\rangle \quad(n=1,2,3, \ldots)
$$

(a) Show that \hat{Q} can be written in terms of its spectral decomposition:

$$
\begin{equation*}
\hat{Q}=\sum_{n} q_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right| . \tag{3.103}
\end{equation*}
$$

Hint: An operator is characterized by its action on all possible vectors, so what you must show is that

$$
\hat{Q}|\alpha\rangle=\left\{\sum_{n} q_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right|\right\}|\alpha\rangle,
$$

for any vector $|\alpha\rangle$.
(b) Another way to define a function of \hat{Q} is via the spectral decomposition:

$$
\begin{equation*}
f(\hat{Q})=\sum_{n} f\left(q_{n}\right)\left|e_{n}\right\rangle\left\langle e_{n}\right| . \tag{3.104}
\end{equation*}
$$

Show that this is equivalent to Equation 3.100 in the case of $e^{\hat{Q}}$.

Solution

Part (a)
Because the set of orthonormal eigenvectors is complete, any vector $|\alpha\rangle$ can be expanded as a linear combination of these eigenvectors.

$$
|\alpha\rangle=\sum_{n=1}^{\infty} a_{n}\left|e_{n}\right\rangle
$$

To solve for a_{n}, take the inner product of both sides with the bra $\left\langle e_{i}\right|$, where $1 \leq i<\infty$.

$$
\begin{aligned}
\left\langle e_{i}\right| \cdot|\alpha\rangle & =\left\langle e_{i}\right| \cdot \sum_{n=1}^{\infty} a_{n}\left|e_{n}\right\rangle \\
\left\langle e_{i} \mid \alpha\right\rangle & =\sum_{n=1}^{\infty} a_{n}\left\langle e_{i} \mid e_{n}\right\rangle \\
\left\langle e_{i} \mid \alpha\right\rangle & =\sum_{n=1}^{\infty} a_{n} \delta_{i n} \\
\left\langle e_{n} \mid \alpha\right\rangle & =a_{n}
\end{aligned}
$$

Following the hint, apply the linear operator \hat{Q} to the vector $|\alpha\rangle$.

$$
\begin{aligned}
\hat{Q}|\alpha\rangle & =\hat{Q} \sum_{n=1}^{\infty} a_{n}\left|e_{n}\right\rangle \\
& =\sum_{n=1}^{\infty} a_{n}\left(\hat{Q}\left|e_{n}\right\rangle\right) \\
& =\sum_{n=1}^{\infty} a_{n}\left(q_{n}\left|e_{n}\right\rangle\right) \\
& =\sum_{n=1}^{\infty}\left(q_{n}\left|e_{n}\right\rangle\right) a_{n} \\
& =\sum_{n=1}^{\infty} q_{n}\left|e_{n}\right\rangle\left\langle e_{n} \mid \alpha\right\rangle \\
& =\sum_{n=1}^{\infty} q_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right| \cdot|\alpha\rangle \\
& =\left(\sum_{n=1}^{\infty} q_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right|\right)|\alpha\rangle
\end{aligned}
$$

Therefore,

$$
\hat{Q}=\sum_{n=1}^{\infty} q_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right| .
$$

Part (b)

Formulas for the powers of \hat{Q} can be obtained as well.

$$
\begin{aligned}
& \hat{Q}^{2}=\left(\sum_{n=1}^{\infty} q_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right|\right)\left(\sum_{\ell=1}^{\infty} q_{\ell}\left|e_{\ell}\right\rangle\left\langle e_{\ell}\right|\right)=\sum_{n=1}^{\infty} \sum_{\ell=1}^{\infty} q_{n} q_{\ell}\left|e_{n}\right\rangle\left\langle e_{n}\right| \cdot\left|e_{\ell}\right\rangle\left\langle e_{\ell}\right|=\sum_{n=1}^{\infty} \sum_{\ell=1}^{\infty} q_{n} q_{\ell}\left|e_{n}\right\rangle \delta_{n \ell}\left\langle e_{\ell}\right|=\sum_{n=1}^{\infty} q_{n}^{2}\left|e_{n}\right\rangle\left\langle e_{n}\right| \\
& \hat{Q}^{3}=\left(\sum_{n=1}^{\infty} q_{n}^{2}\left|e_{n}\right\rangle\left\langle e_{n}\right|\right)\left(\sum_{\ell=1}^{\infty} q_{\ell}\left|e_{\ell}\right\rangle\left\langle e_{\ell}\right|\right)=\sum_{n=1}^{\infty} \sum_{\ell=1}^{\infty} q_{n}^{2} q_{\ell}\left|e_{n}\right\rangle\left\langle e_{n}\right| \cdot\left|e_{\ell}\right\rangle\left\langle e_{\ell}\right|=\sum_{n=1}^{\infty} \sum_{\ell=1}^{\infty} q_{n}^{2} q_{\ell}\left|e_{n}\right\rangle \delta_{n \ell}\left\langle e_{\ell}\right|=\sum_{n=1}^{\infty} q_{n}^{3}\left|e_{n}\right\rangle\left\langle e_{n}\right| \\
& \hat{Q}^{4}=\left(\sum_{n=1}^{\infty} q_{n}^{3}\left|e_{n}\right\rangle\left\langle e_{n}\right|\right)\left(\sum_{\ell=1}^{\infty} q_{\ell}\left|e_{\ell}\right\rangle\left\langle e_{\ell}\right|\right)=\sum_{n=1}^{\infty} \sum_{\ell=1}^{\infty} q_{n}^{3} q_{\ell}\left|e_{n}\right\rangle\left\langle e_{n}\right| \cdot\left|e_{\ell}\right\rangle\left\langle e_{\ell}\right|=\sum_{n=1}^{\infty} \sum_{\ell=1}^{\infty} q_{n}^{3} q_{\ell}\left|e_{n}\right\rangle \delta_{n \ell}\left\langle e_{\ell}\right|=\sum_{n=1}^{\infty} q_{n}^{4}\left|e_{n}\right\rangle\left\langle e_{n}\right| \\
& \vdots \\
& \hat{Q}^{k}=\sum_{n=1}^{\infty} q_{n}^{k}\left|e_{n}\right\rangle\left\langle e_{n}\right|
\end{aligned}
$$

Now consider the spectral decomposition of the exponential function.

$$
\begin{aligned}
e^{\hat{Q}} & =\sum_{n=1}^{\infty} e^{q_{n}}\left|e_{n}\right\rangle\left\langle e_{n}\right| \\
& =\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\infty} \frac{q_{n}^{k}}{k!}\right)\left|e_{n}\right\rangle\left\langle e_{n}\right| \\
& =\sum_{k=0}^{\infty} \frac{1}{k!}\left(\sum_{n=1}^{\infty} q_{n}^{k}\left|e_{n}\right\rangle\left\langle e_{n}\right|\right) \\
& =\sum_{k=0}^{\infty} \frac{1}{k!} \hat{Q}^{k} \\
& =\hat{I}+\hat{Q}+\frac{1}{2} \hat{Q}^{2}+\frac{1}{3!} \hat{Q}^{3}+\cdots
\end{aligned}
$$

This is the power series expansion of $e^{\hat{Q}}$ in Equation 3.100 on page 119.

